## Catalytic Conversion of CO<sub>2</sub> into Industrial Chemicals

Project Number 1022403

### **Douglas R. Kauffman**

#### NETL / DOE

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Transforming Technology through Integration and Collaboration August 18-20, 2015

## **Executive Summary**

- 1. NETL has developed benchmark CO<sub>2</sub> conversion technology
- 2. Electrochemical  $CO_2$  conversion (ECC) operates at 85-100% efficiency ... no wasted electricity
- 3. Estimated tonne-per-day CO<sub>2</sub> conversion rates when coupled with current renewable energy sources (solar, wind, *etc.*)
- 4. The technology compares favorably to other CCUS technologies using NETL's CCUS Metrics (producing methanol from syngas)

# CO<sub>2</sub> Conversion

- Utilize CO<sub>2</sub> emissions as an untapped chemical resource
- CO<sub>2</sub> conversion must be carbon neutral (or negative)
  - Consume more CO<sub>2</sub> than produced
  - Must use carbon-friendly energy (solar, wind, etc.)
- Catalytic approaches
  - Thermochemical
  - Photochemical
  - Electrochemical
- Electrochemical CO<sub>2</sub> conversion is most promising
  - High efficiency
  - Carbon neutral
  - Renewable energy compatible



### **Electrochemical CO<sub>2</sub> Conversion**



CO<sub>2</sub> reduction catalyst drives the reaction



# Benefit to the Program

- Sustainable and environmentally responsible utilization of existing fossil fuel resources.
- Supplement current strategies for CO<sub>2</sub> Storage at the national, regional, basin, and formation scale.

### **Project Outline**

### 1. Catalyst design, synthesis and characterization (2010-)

- Small-scale studies to identify promising materials
- Experimental and computational
- Identify reaction rates, product selectivity and reaction mechanisms

### 2. Lifetime testing and scalability studies (2014-2015)

- Evaluate promising catalysts in "larger" bench-scale reactors
- Identify scaling challenges
- Longer-term testing
- Provide metrics for techno-economic screening analysis

### 3. Techno-economic screening analysis (2015)

- Collaboration between ORD and OPPB
- Identify target products, market shares and industrial-scale viability
- Performance benchmarks for future technologies



# Electrocatalytic CO<sub>2</sub> Reduction

Fundamental tests in small scale reactor



NETL 7

Collaboration with Professor Jin at Carnegie Mellon University (2010-present)

## Electrocatalytic CO<sub>2</sub> Reduction

Au<sub>25</sub> is the most active CO<sub>2</sub> conversion catalyst ever reported!



Kauffman et al J. Am. Chem. Soc. 2012; J. Phys. Chem. Lett. 2013; Chemical Science 2014, 5, 3151 // Two US patent applications, one patent pending



8

### **Project Outline**

### 1. Catalyst design, synthesis and characterization (2010-)

- Small-scale studies to identify promising materials
- Experimental and computational
- Identify reaction rates, product selectivity and reaction mechanisms

### 2. Lifetime testing and scalability studies (2014-2015)

- Evaluate promising catalysts in "larger" bench-scale reactors
- Identify scaling challenges
- Longer-term testing
- Provide metrics for techno-economic screening analysis

### 3. Techno-economic screening analysis (2015)

- Collaboration between ORD and OPPB
- Identify target products, market shares and industrial-scale viability
- Performance benchmarks for future technologies



## Scaling and Catalyst Lifetime

Increased reactor volume by 10x and electrode area 150x





#### 150 mL continuous flow reactor



## A "Tunable" Chemical Reaction

Catalyst loading controls the reaction rate and CO to H<sub>2</sub> ratios







## Long-term Performance

Efficient and stable electrochemical CO<sub>2</sub> conversion





## **Incorporating Renewable Energy**

Products out









## CO<sub>2</sub> Conversion Capacity

#### Estimates based on NETL experimental data



**Solar power:** 1.0 tonne CO<sub>2</sub> acre<sup>-1</sup> day<sup>-1</sup> (assuming 16% efficiency)

One acre of solar panels can convert a metric tonne of  $CO_2$  into CO, formaldehyde, methane or methanol every day.



**Wind Power:** 1.6 tonnes CO<sub>2</sub> day<sup>-1</sup> turbine<sup>-1</sup> (assuming 25% utilization)

A single 1 megawatt wind turbine can convert 1.6 metric tonnes of  $CO_2$  into CO, formaldehyde, methane or methanol every day.



Batteries can power CO<sub>2</sub> conversion systems during periods without renewable energy.



### **Project Outline**

### 1. Catalyst design, synthesis and characterization (2010-)

- Small-scale studies to identify promising materials
- Experimental and computational
- Identify reaction rates, product selectivity and reaction mechanisms

### 2. Lifetime testing and scalability studies (2014-2015)

- Evaluate promising catalysts in "larger" bench-scale reactors
- Identify scaling challenges
- Longer-term testing
- Provide metrics for techno-economic screening analysis

### 3. Techno-economic screening analysis (2015)

- Electrochemical CO<sub>2</sub> conversion is cost competitive with other CCUS strategies
- Target downstream CO +  $H_2 \rightarrow$  methanol process.



# Synergy Opportunities

- Collaboration between ORD and OPPB to evaluate promising CO<sub>2</sub> utilization strategies and estimate scalability and potential market share.
- Collaboration with other divisions to share capabilities (sensors, fuel cells, CCBTL, etc.)

# Accomplishments to Date

- Demonstration of carbon-neutral CO<sub>2</sub> conversion system
- Demonstration that CO<sub>2</sub> conversion technology is costcompetitive with other CCUS technologies.
- Multiple publications, presentations and patent applications (one pending)

# **Comments / Questions?**

#### WEDNESDAY, AUGUST 19, 2015

- 1:15 PM Monitoring the Extent of CO<sub>2</sub> Plume and Pressure Perturbation <u>Bill Harbert</u>
- 2:05 PM Reservoir and Seal Performance Dustin Crandall
- 3:45 PM Monitoring Groundwater Impacts Christina Lopano
- 5:30 p.m. Poster Session (SubTER, NRAP, and EFRCs)
  - 1. Kelly Rose Evaluating Induced Seismicity with Geoscience Computing & Big Data A multi-variate examination of the cause(s) of increasing induced seismicity events
  - 2. NRAP, EDX, and NATCARB Grant Bromhal, Bob Dilmore, Kelly Rose, Maneesh Sharma
  - 3. John Tudek- EFRC
  - 4. Sean Sanguinito NETL CO2 SCREEN)

#### THURSDAY, AUGUST 20, 2015

11:25 AM Shales as Seals and Unconventional Reservoirs for CO<sub>2</sub>-Robert Dilmore



This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

CRAN

# Appendix

These slides will not be discussed during the presentation, but are mandatory

## **Organization Chart**

Team Members: D. Kauffman, D. Alfonso, D.N. Tafel, C. Matranga

Task 8: Catalytic Conversion of CO2 into Industrial Chemicals (TTC: Kauffman)

- **Subtask 8.1:** Novel Reactor Chemistry and Reactor Design (Kauffman)
- **Subtask 8.2** Design, Discovery, Synthesis, and Characterization of Novel Catalyst Systems for Catalytic CO<sub>2</sub> Conversion (Kauffman)

**Task 9:** Evaluation of CO<sub>2</sub> Use and Re-Use Strategies (TTC: Kauffman)

Collaboration with OPPB for techno-economic screening studies

## Gantt Chart

|                                                                                                                            | <b>Project Dates</b><br>For each Task, Subtask,<br>Sub-subtask of your WBS |                                         |  | FY15                                            |          |         |               | FY16 |          |               |               | FY17 |    |    |    | FY18 |            |      |    | FY19 |    |                 |               |  |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|--|-------------------------------------------------|----------|---------|---------------|------|----------|---------------|---------------|------|----|----|----|------|------------|------|----|------|----|-----------------|---------------|--|
|                                                                                                                            | Start<br>Reflects the<br>date the work                                     | Finish<br>Reflects the<br>date the work |  |                                                 |          |         |               |      |          |               |               |      |    |    |    |      |            |      |    |      |    |                 |               |  |
| FY15 Carbon Storage (Project Period: 10/01/14 – 09/30/19)                                                                  | to begin                                                                   | for completion                          |  | Q1                                              | Q2       | Q3      | Q4            | Q1   | Q2       | Q3            | Q4            | Q1   | Q2 | Q3 | Q4 | Q1   | Q2         | Q3   | Q4 | Q1   | Q2 | Q3              | Q4            |  |
| 6. Energy Data eXchange/National Carbon Sequestration Database and Geographic Information System<br>Geographia Resources   | 10/1/2014                                                                  | 9/30/2019                               |  |                                                 | M1.1     | 5.6.A   |               |      |          |               |               |      |    |    |    |      | M1.18<br>♦ | .6.B |    |      |    |                 | $\rightarrow$ |  |
| 6.1 Energy Data eXchange/National Carbon Sequestration Database and Geographic Information System                          | 10/1/2014                                                                  | 9/30/2019                               |  | <u> </u>                                        |          |         |               |      |          |               |               |      |    |    |    |      | <u> </u>   |      |    |      |    |                 | $\rightarrow$ |  |
| 7. Monitoring the Extent of CO <sub>2</sub> Plume and Pressure Perturbation                                                | 10/1/2014                                                                  | 9/30/2016                               |  | ←                                               | M1.1     | 5.7.A   | M1.15.7.<br>♦ | .8   |          |               | $\rightarrow$ |      |    |    |    |      |            |      |    |      |    |                 |               |  |
| 7.1 Knowledge and Technology Gap Identification                                                                            | 10/1/2014                                                                  | 9/30/2016                               |  | <u>&lt;</u>                                     |          |         |               |      |          |               | $\rightarrow$ |      |    |    |    | M    | 19.9 0     |      |    |      |    |                 |               |  |
| 8. Catalytic Conversion of CO <sub>2</sub> to Industrial Chemicals                                                         | 11/15/2014                                                                 | 11/14/2020                              |  | <del>\</del>                                    |          | ļ       |               |      |          | WII.10        | .o.A          |      |    |    |    |      |            |      |    |      |    |                 | $\rightarrow$ |  |
| 8.1 Novel Reaction Chemistries and Reactor Development for Scalability Assessments                                         | 11/15/2014                                                                 | 11/14/2020                              |  | ←                                               | -        |         |               |      |          |               |               |      |    |    |    |      |            |      |    |      |    | $ \rightarrow $ | $\rightarrow$ |  |
| 8.2 Design, Discovery, Synthesis, and Characterization of Novel Catalyst Systems for Catalytic CO $_{\rm 2}$<br>Conversion | 11/15/2014                                                                 | 11/14/2020                              |  | +                                               |          | ļ       |               |      |          |               |               |      |    |    |    |      |            |      |    |      |    |                 | $\rightarrow$ |  |
| 9. Evaluation of CO $_2$ Use and Re-Use Strategies                                                                         | TBD                                                                        | TBD                                     |  |                                                 |          |         |               |      |          |               |               |      |    |    |    |      |            |      |    |      |    |                 |               |  |
| 9.1 CO <sub>2</sub> Use and Re-Use Strategy Evaluation                                                                     |                                                                            |                                         |  |                                                 |          |         |               |      |          |               |               |      |    |    |    |      |            |      |    |      |    |                 |               |  |
| 10. SubTER - Induced Seismicity with Big Data                                                                              | 10/1/2014                                                                  | 3/30/2015                               |  | <u>&lt;                                    </u> | ¢ (      | 0       |               |      | <b></b>  |               |               |      |    |    |    |      |            |      |    |      |    |                 |               |  |
| 10.1 Data Gathering                                                                                                        | 10/1/2014                                                                  | 3/30/2015                               |  | <                                               | <u> </u> |         |               |      | <b>→</b> | •             |               |      |    |    |    |      |            |      |    |      |    |                 |               |  |
| 10.2 Development of Data Mining Techniques                                                                                 | 10/1/2014                                                                  | 6/30/2015                               |  | <u> </u>                                        |          |         |               |      |          | $\rightarrow$ |               |      |    |    |    |      | ļ          |      |    |      |    |                 |               |  |
| 10.3 Data Mining                                                                                                           | 1/1/2015                                                                   | 9/30/2015                               |  |                                                 | <u> </u> | M1 1E 4 | >             | 11 D |          |               |               |      |    |    |    |      |            |      |    |      |    |                 |               |  |
| 11. Perfluorocarbon Tracers (PFT) Analysis to Support SW Partnership                                                       | 10/1/2014                                                                  | 9/30/2016                               |  | ←                                               |          | ¢       | A milling     | >    |          |               | $\rightarrow$ |      |    |    |    |      |            |      |    |      |    |                 |               |  |

# Bibliography

- **D. Kauffman**, P. Ohodnicki, B. Kail, C. Matranga "Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles" *J. Phys. Chem. Lett.* **2011**, *2*, 2038-2043. Available online: http://dx.doi.org/10.1021/jz200850y
- **D. Kauffman**, D. Alfonso, C. Matranga, H. Qian, R. Jin "Experimental and Computational Investigation of Au<sub>25</sub> Clusters and CO2: A Unique Interaction and Enhanced Electrocatalytic Activity" *J. Am. Chem. Soc.* **2012**, *134*, 10237-10243. Available online: http://dx.doi.org/10.1021/ja303259q
- D. Kauffman, D. Alfonso, C. Matranga, G. Li, R. Jin "Photomediated Oxidation of Atomically Precise Au<sub>25</sub>(SC<sub>2</sub>H<sub>4</sub>Ph)<sub>18</sub><sup>-</sup> Nanoclusters" *J. Phys Chem Lett.* 2013, *4*, 195-202. Available Online: http://dx.doi.org/10.1021/jz302056q
- **D. Kauffman**, D. Alfonso, C. Matranga, H. Qian, R. Jin "A Quantum Alloy: The Ligand-Protected Au<sub>25-x</sub>Ag<sub>x</sub>(SR)<sub>18</sub> Cluster" *J. Phys. Chem. C*, **2013**, *117*, 7914-7923. Available online: http://dx.doi.org/10.1021/jp4013224
- D. Kauffman, D. Alfonso, C. Matranga, P. Ohodnicki, X. Deng, R. C. Siva, C. Zeng, R. Jin, "Probing Active Site Chemistry with Differently Charged Au<sub>25</sub><sup>q</sup> Nanoclusers (q = -1, 0, +1). Chem. Sci. 2014, 5, 3151. Available online: <u>http://dx.doi.org/10.1039/c4sc00997e</u>
- D. Kauffman, J. Thakkar, R. Siva, C. Matranga, P. R. Ohodnicki, C. Zeng, R. Jin "Efficient Electrochemical CO2 Conversion Powered by Renewable Energy" Acs Appl. Mater. Interface 2015, 7, 15626-15632. Available online: http://dx.doi.org/10.1021/acsami.5b04393
- **D. Kauffman**, D. Alfonso, D. N. Tafen, J. Lekse, C. Wang, X. Deng, J. Lee, H. Jang, J-S. Lee, S. Kumar, C. Matranga "Electrocatalytic Oxygen Evolution with an Atomically Precise Nickel Complex" *Submitted and currently under review.*
- 10+ presentations delivered at international scientific conferences.